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Abstract. An infinite-U term is introduced into the Holstein–Primakoff-transformed magnon
Hamiltonian of quantum Heisenberg magnetic models of spins. This term removes the
unphysical spin-wave states at every site, and automatically truncates the expansion in powers
of the magnon occupation operator. The resultant strong-coupling magnon Hamiltonians
are accurately equivalent to the original spin Hamiltonians. The on-siteU -levels and their
implications are studied. Within a simple decoupling approximation for our strong-coupling
magnon models, we can easily reproduce the results for the (sublattice) magnetizations obtained
previously for the original spin model. But our bosonic Hamiltonians without any unphysical
states allow substantially improved values to be obtained for the spectral weight in the ground
state, and for ground-state energies lower than those obtained within previous approximations.

1. Introduction

Quantum Heisenberg magnetic models, including ferromagnetic (FM) and antiferromagnetic
(AFM) ones, are well accepted models for insulating ferromagnets and antiferromagnets.
The exact analytical solution is limited to one dimension and FM ground states. For
general parameters, one has to turn to approximation methods or to numerical work. As
for analytical methods, one can work directly with the original Heisenberg model, i.e. using
spin operators and their algebra. In this category are the decoupling approaches [1, 2], the
spherical approach [3], the projection method [4], and an isotropic decoupling approach
[5]. The first of these is a mean-field approximation in the context of Green functions, the
second one is for paramagnetic states, the third one investigates the ground states only, and
the last one is for short-range magnetic correlation. In any case, a treatment in terms of
the bosonic magnon operators should be advantageous, because of the simpler commutation
rules, and the Bose statistics. For this purpose one has to map the Heisenberg model
onto a spin-wave model, using the well known Holstein–Primakoff [6] or the Dyson [7]
transformation. In fact, many experimental physicists tend to describe their experimental
results in terms of spin-wave theory [10, 11]. But if one chooses the Holstein–Primakoff
transformation, a series expansion of a square-root term in powers of magnon occupation
operators is necessary [6, 8]; and one has to violate the spin-operator relation(S+)† = S−
if one chooses Dyson’s spin-wave transformation [7, 9].

The simplest spin-wave theory is linear spin-wave theory [12, 13]. Some nonlinear
effects, namely, essentially the next terms in the expansion of the square root, are taken into
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account in nonlinear spin-wave theories [12, 6, 7, 14, 15]. But the Hilbert space on which the
spin-wave (magnon) operators are defined is much larger than the physical Hilbert space. For
spin s, the Hilbert space for a single site has the dimension 2s+1. But the Hilbert space on
which the magnon operators operate is infinite dimensional. In 3D ferromagnets there should
be only few spin-wave excitations at low temperature. As for antiferromagnets, there should
be a substantial number of magnons even at zero temperature, as the sublattice magnetization
is less thans. The effect of the unphysical magnon states on the physical quantities
becomes more serious with increasing temperature, because then a thermal occupation of
the unphysical states becomes possible. In the paramagnetic (PM) phase, the unphysical
states lead to serious problems. Lindgård and Danielsen [16] proposed the matching-of-
matrix-elements (MME) method, in which operators with a complicated algebra (like spin
operators) are expressed in terms of Bose operators, so that not only the commutation rules,
but also certain matrix elements of the original operators remain unchanged, and the matrix
elements connecting unphysical states vanish. This MME method can be considered to
be a generalization of the Holstein–Primakoff transformation. Spin Hamiltonians like the
Heisenberg model are mapped onto an interacting Bose model containing on-site interaction
terms, but they operate on a Hilbert space, which has a still much larger dimension than
the physical Hilbert space. In Mattis’s books [12], a similarity transformation is used to
eliminate partly the unphysical states in the FM phase. In Takahashi’s modified spin-wave
theory, the total number of magnons is fixed in the PM phase [17, 18]. But on a single
site, the dimension of the magnon Hilbert space is still much larger than 2s + 1. Friedberg,
Lee and Ren [19] introduced an on-site interaction term into a lattice Bose Hamiltonian,
and proved the equivalence of this Bose model to a spin-wave model which is equivalent
to a spin-12 Heisenberg model; they applied the theorem to the anisotropic ferromagnetic
Heisenberg model in a magnetic field [19].

In this paper we shall introduce a large-U term into the Holstein–Primakoff-transformed
magnon Hamiltonian of quantum Heisenberg magnetic models of any spins. In the
U → ∞ limit, this term rigorously removes the unphysical magnon states at every site,
so the magnon Hilbert space is mapped accurately onto the original spin-state space. At
the same time, it automatically truncates the high-power terms of the magnon operators
arising in the series expansion. This approach has some connections with earlier attempts
[16, 19], but we present a formulation that is valid for arbitrary spins, and apply it to the
calculation of physical quantities like the order parameter. We shall study the hierarchy
of the on-siteU -levels, and its implication as regards the spin physics. Within a simple
decoupling approximation, we can easily reproduce results for the FM magnetization and
AFM sublattice magnetization which were obtained previously only in theories working
with the original spin operators, and were better than the results from conventional spin-
wave theories. Furthermore, our bosonic Hamiltonians without unphysical states allow us
to obtain improved values for the renormalization of the spectral factor at zero temperature,
and ground-state energies lower than those of the existing approximations.

2. Bosonic Hamiltonians without unphysical states

Our FM and AFM Heisenberg Hamiltonians are defined by

H = ±
∑
〈ij〉

Jij

(
1

2
(S+i S

−
j + S−i S+j )+ Szi Szj

)
(1)

where Jij is positive, and the summation is over the nearest-neighbour sites. Here
the negative sign corresponds to the ferromagnetic case, and the positive sign to the
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antiferromagnetic case. For the AFM case, it is better to make aπ spin rotation for
the operators in one of the two sublattices. The rotated AFM Hamiltonian reads

H =
∑
〈ij〉

Jij

(
1

2
(S+i S

+
j + S−i S−j )− Szi Szj

)
. (2)

We choose Holstein–Primakoff (HP) transformation to transform the spin operators into the
magnon operators:

S−i = a†i
√

2s − ni S+i =
√

2s − ni ai Szi = s − ni ni = a†i ai . (3)

The magnon operatorsai are standard bosonic operators. We prefer HP transformation,
because Dyson transformation violates the conjugate relation of the spin operators. When
substituting the transformation (3) into the Hamiltonians, one obtains the following FM
Hamiltonian:

H =
∑
i

εa
†
i ai −

∑
〈ij〉

Jij

[
1

2
(a
†
i

√
2s − ni

√
2s − nj aj + HC)+ a†i aia†j aj

]
− 1

4
εN (4)

and the following AFM Hamiltonian:

H =
∑
i

εa
†
i ai +

∑
〈ij〉

Jij

[
1

2
(a
†
i a
†
j

√
2s − ni

√
2s − nj + HC)− a†i aia†j aj

]
− 1

4
εN. (5)

HereN is the total number of the sites,ε = JZ/2, andJ is the exchange constant in the
isotropic case or the largest of theJij in the anisotropic case, andZ is the coordination
number. Since the operatorai is a standard Bose operator, it operates on an infinite-
dimensional Hilbert space. But the physical Hilbert space corresponding to a single site is
spanned by only 2s + 1 states. The extra states are unphysical. The magnon Hamiltonians
(4) and (5) are not equivalent to the original spin Hamiltonians (1) and (2) if the unphysical
states are not removed. For the exact FM ground state, it is expected that there is no bosonic
excitation, so the unphysical states remain unoccupied at zero temperature. The higher the
temperature, the more serious the problems that may arise, if the thermal occupation of
the unphysical states becomes possible. In the AFM case, even the ground state has some
substantial bosonic excitations. The largest discrepancy appears in the paramagnetic (PM)
phase, where the average spin in conventional magnon theory becomes very unreasonable
if one tries to calculate it without introducing some constraints.

To remove completely the effect of the unphysical magnon states at every site, we
can make their energy levels infinitely higher than those of the physical spin states. We
introduce a large-U term into the HP-transformed Hamiltonians. ThisU -term resembles
the strong-coupling positiveU -term in the Hubbard model of electronic systems. But it is
not dynamical; it is introduced only as a constraint to raise the energies of the unphysical
states so that they are infinitely high as compared with those of the physical states. This
means that our new HamiltoniansH ′ are composed of the original HamiltoniansH and the
following U -terms:

HU = 1

(2s + 1)!
Ua
†(2s+1)
i a

(2s+1)
i .

In fact, U should be considered to be infinite. Therefore, the energies of the unphysical
states should be pushed infinitely high compared to those of the physical states by the
U -term. For the half-spin case, the resultant FM Hamiltonian reads

H ′ =
∑
i

(
εa
†
i ai +

1

2
Ua
†2
i a

2
i

)
−
∑
〈ij〉

Jij

[
1

2
(a
†
i aj + aia†j )+ a†i aia†j aj

]
− 1

4
εN (6)
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and the AFM Hamiltonian reads

H ′ =
∑
i

(
εa
†
i ai +

1

2
Ua
†2
i a

2
i

)
+
∑
〈ij〉

Jij

[
1

2
(a
†
i a
†
j + aiaj )− a†i aia†j aj

]
− 1

4
εN. (7)

Here we need no chemical potential, since the unphysical magnon states have been removed
rigorously by the infinite-U term. Furthermore, the square-root terms

√
2s − a†a in the

Hamiltonians (4), (5) have been expanded as√
2s − a†a =

√
2s − (

√
2s −√2s − 1)a†a + (

√
2s − 2

√
2s − 1+√2s − 2)

a†2a2

2!
+ (terms ina†nan, n > 3) (8)

and all termsa†nan with n > 2s can be neglected after introduction of theU -terms, because
their energy is already shifted to infinity by theU -term. In the cases wheres = 1

2, all

operator product terms, includinga†nj a
m
i (m > 1 and/orn > 1), disappear automatically,

so the Hamiltonians (6) and (7) are very simple. For larger spins, there are more terms
resulting from the expansion of the square root, because the terms includinga

†n
i a

m
j (m 6 2s

andn 6 2s) are allowed. This expansion is different from the 1/s expansion in the spin-
wave theories. We make no approximation in the expansion (8). TheU -term not only
pushes the unphysical states infinitely high above the physical states, but also automatically
truncates the expansion of the square root. Our expansions ofS+i andS−i are composed of
only 2s terms, andSzi is s−a†i ai , and so are different from the infinite sums of the three spin
operators in reference [16]. Our mapping works for ferromagnetic and antiferromagnetic
Heisenberg models of any spins, and so is in contrast to the equivalence theorem, which
works only for half-spin systems [19].

Figure 1. Left: on-siteU -levels in the case of the half-spin. At the ground level there are only
|0〉 anda†i |0〉. Right: on-siteU -levels in the case of the unit spin. At the ground level there are

only |0〉, a†i |0〉, anda†2i |0〉.

3. On-siteU -levels

To study the effect of theU -term, we first study the on-siteU -levels. In the half-spin case,
we have the following commutation relations:

[a†2a2, a†paq ]− = [p(p − 1)− q(q − 1)]a†paq + 2(p − q)a†(p+1)a(q+1). (9)
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For q = 0 andp = n, we obtain by application of this expression to the magnon vacuum

H
1/2
U |n〉 =

n(n− 1)U

2
|n〉 (10)

where

H
1/2
U =

U

2
a†2a2

and |n〉 = a†n|0〉. |n〉 is an eigenstate ofH 1/2
U . The magnon states for the lowest five

U -levels are shown in the left-hand part of figure 1. The magnon vacuum state|0〉 and the
single-magnon statea†i |0〉 correspond to the two physical spin states. The multiple-magnon
statesa†ni |0〉 (n > 1) are separated from these physical states by an energy of the magnitude
of U , and are thus projected out from the Hilbert space in the limitU → ∞. Therefore,
we expect〈a†ni ani 〉 = 0 (n > 2) whenU tends to∞.

As for the case of spin 1, we have the following operator equality:

[a†3a3, a†paq ]− = [p(p − 1)(p − 2)− q(q − 1)(q − 2)]a†paq

+ 3[p(p − 1)− q(q − 1)]a†(p+1)a(q+1) + 3(p − q)a†(p+2)a(q+2). (11)

The on-siteU -part of the Hamiltonian is

H 1
U =

U

6
a†3a3.

We obtain the following eigenstate equation:

H 1
U |n〉 =

n(n− 1)(n− 2)U

6
|n〉. (12)

The states within the first five on-site levels are shown in the right-hand part of figure
1. At the ground level are the magnon vacuum|0〉, the single-magnon statea†i |0〉, and
the double-magnon statea†2i |0〉. They correspond to the three physical states of the spin
operator:−1, 0, 1. Other states are separated from the physical states by energies of at least
U . Therefore, we expect〈a†ni ani 〉 = 0 (n > 3) whenU tends to∞.

For higher spinss, we can derive some operator equations similar to (9) and (11). We
always have 2s + 1 magnon states on the ground level, corresponding to all of the physical
spin states, and the unphysical states are separated from the physical states by energies of
orderU . We expect〈a†ni ani 〉 = 0 (n > 2s + 1) whenU tends to∞.

4. The first-order decoupling approximation

Since theU is very large, we cannot apply Hartree–Fock approximation to the magnon
Hamiltonians. Now we study the FM and AFM systems of half-spin in a first-level
decoupling approach to their equations of motion. We chooseai as our dynamical variable.

4.1. The FM case

Using the Zubarev notation for the commutator Green function

〈〈A;B〉〉z = −i
∫ +∞
−∞

θ(t)〈[A(t), B]〉eizt dt (13)
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we get the equation of motion

(z − ε)〈〈ai; a†j 〉〉z = δij −
1

2

∑
l

Jil〈〈al; a†j 〉〉z −
∑
l

Jil〈〈ainl; a†j 〉〉z + U〈〈a†i a2
i ; a†j ]〉〉z.

(14)

In the above equation, the third term comes from the inter-site interaction, and the fourth
term comes from the on-site large-U interaction. Without these two terms, one recovers the
conventional FM linear spin-wave theory. SinceU is very large, the fourth term cannot be
neglected. We have to write down its equation of motion to get closed equations:

(z − ε − U − JZn)〈〈a†i a2
i ; a†j 〉〉z = 2nδij − n

∑
l

Jil〈〈al; a†j 〉〉z. (15)

Here nl = a
†
l al denotes the magnon occupation operator, andn = 〈nl〉 its thermal

expectation value. In the latter equation, other higher-order Green functions have been
neglected because they involve an even higher multiple-magnon occupation of a single site,
and, therefore, vanish for infiniteU . Furthermore, a decoupling approximation for the
magnon and occupation operators for different sites has been made, but operators operating
on the same site are not decoupled. SinceU tends to infinity, andz is of the order ofJ ,
the prefactor on the left-hand side can be simplified to−U . Substituting it into (14), and
using once more the above-mentioned decoupling approximation, we get

(z − (1− 2n)ε)〈〈ai; a†j 〉〉z = (1− 2n)δij − 1

2
(1− 2n)

∑
l

Jil〈〈ai; a†j 〉〉z. (16)

By Fourier transformation, we obtain for thek-dependent Green function

Gk(z) = 1

N

∑
i,j

〈〈ai; a†j 〉〉zeik·(Ri−Rj ) = 1− 2n

z − (1− 2n)ε(1− rk) (17)

where

rk = 1

Z

∑
∆

eik·∆ (18)

denotes the (dimensionless) magnon dispersion characteristic for the lattice under
consideration;∆ denotes the nearest-neighbour vectors. For ad-dimensional simple cubic
lattice, we have

rk = 1

d

d∑
i=1

coski.

The self-consistency equation for determiningn reads

n = (1− 2n)
1

N

∑
k

1
/[

exp
JZ(1− 2n)(1− rk)

2T
− 1

]
. (19)

This equation is equivalent to that expressed in terms of the spin-operator average,〈Szi 〉,
obtained by Bogoliubov [1]. In the limitT → 0, we obtainn = 0 or 1 as solutions of the
above equation. These two solutions correspond to〈Szi 〉 = 1

2 or − 1
2, respectively , since

Szi = 1
2−ni . When the temperature increases to the Curie temperatureTc, the two branches

converge ton = 1
2, or 〈Szi 〉 = 0. For finite but smallT , we obtain〈Szi 〉 = 1

2 − α(T /J )3/2,
whereα is a positive constant. WhenT → Tc, (1− 2n) tends to zero, so we can derive an
asymptotic expression for〈Szi 〉 as follows:

〈Szi 〉 ∝
√

1− T/Tc Tc = JZ/4P P = 1

N

∑
k

1/(1− rk). (20)
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In two or one dimensions, thek-integration diverges, i.e.P = ∞, soTc = 0 in accordance
with the Mermin–Wagner theorem [24].

Figure 2. The 3D magnetization of the FM model as a function of the temperature. The solid
line is for the approximation in this paper; the dashed line is for nonlinear spin-wave theories;
and the dotted line is for linear spin-wave theory. The values ofTc are 0.989J , 0.98J , and
1.71J , respectively. But the high-temperature expansion result is 0.889J . The transition for the
nonlinear spin-wave theory is of first order.

For T 6 Tc in three dimensions, we obtain two solutions. These two solutions
correspond to the two degenerate ferromagnetic solutions. The resulting order parameter,
i.e. the magnetization, is shown in figure 2. The 3D results from the conventional
nonlinear and linear spin-wave theories are also presented for comparison [12]. The
nonlinear spin-wave theory produces an unphysical first-order transition atT = 0.98J
[12]. The magnetization obtained within our strong-coupling magnon theory according
to (19) is obviously a substantial improvement over the whole temperature regime; we
obtain as the critical (Curie) temperatureTc = 0.989J , whereas the series expansion
result for Tc is Tc = 0.889J [20]. It is interesting to compare this result forTc to the
spherical approximation for the paramagnetic phase [3]. The spherical approximation result,
Tc = 0.82J , is slightly smaller than the numerical results, whereas our resultTc = 0.989J is
on the higher-temperature side of the numerical results. Our ground-state energy is−0.25Jd
per site in two and three dimensions, as it should be.

4.2. The AFM case

In this case, the Green functionGij (z) = 〈〈ai; a†j 〉〉z alone is not sufficient, and we have to

consider also the ‘anomalous’ one-particle Green functionFij (z) = 〈〈a†i ; a†j 〉〉z. We obtain
the following equation of motion for the Green functionGij (z):

(z − ε)Gij = δij + 1

2

∑
l

JilFlj −
∑
l

Jil〈〈ainl; a†j 〉〉z + U〈〈a†i a2
i ; a†j 〉〉z. (21)

In the above equation, the third term comes from the inter-site interaction, and the fourth
term comes from the on-site large-U interaction. Without these two terms, one obtains the
existing AFM linear spin-wave theory. In the same way as in the FM case, we have to
write down a further equation of motion for theU -term. This reads

(z − ε − U − JZn)〈〈a†i a2
i ; a†j 〉〉z = 2nδij + n

∑
l

JilFlj (z) (22)
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Figure 3. The 3D sublattice magnetization of the AFM model as a function of temperature.
The solid line is for the approximation in this paper; the dashed line is for nonlinear spin-wave
theories; and the dotted line is for linear spin-wave theory. The values ofTN are 0.989J ,
1.107J , and 1.70J , respectively. But the high-temperature expansion result is 0.951J . The
transition for the nonlinear spin-wave theories is of first order.

where we have again decoupled magnon occupation number operators and single-magnon
operators at different lattice sites. Inserting this into (14), and using the decoupling approxi-
mation once more, we get

(z − (1− 2n)ε)Gij = (1− 2n)δij + 1

2
(1− 2n)

∑
l

JilFlj . (23)

In the same way, we obtain

(z − (1− 2n)ε)Fij = −1

2
(1− 2n)

∑
l

JilGlj . (24)

These two equations are closed, and yield the Green functions. This approximation is
similar to the first-order Hubbard approximation of the electronic Hubbard model. Since
Szi = 1/2− ni , it is clear that the above result is equivalent to results obtained previously
for the spin model [1, 2]. The Green functions are given by

Gk = (1− 2n)[z + (1− 2n)ε]/[z2− ε2(1− 2n)2(1− r2
k )]

Fk = −(1− 2n)2εrk/[z
2− ε2(1− 2n)2(1− r2

k )].
(25)

The self-consistent equation for determiningn is given by

1

2
=
(

1

2
− n

)
1

N

∑
k

1√
1− r2

k

coth
ωk

2T
(26)

whereωk = ( 1
2 − n)JZ

√
1− r2

k . In three dimensions we get for the zero-temperature
sublattice magnetizationS0 = 0.4325, and the Ńeel temperature isTN = 0.989J . The
sublattice magnetization as a function ofT is shown in figure 3. The Ńeel temperature
is better than that of the conventional spin-wave theories, because the high-temperature
expansion result is 0.951J [20]. For low temperatureT , we obtain〈Sz〉 = S0 − η(T /J )2.
When the temperature tends toTN , the sublattice magnetization has the following asymptotic
expression:

〈Sz〉 ∝
√

1− T/TN TN = JZ/4P. (27)
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The sublattice magnetization as a function of temperature is shown in figure 3. The results
from the linear spin-wave theory and a nonlinear spin-wave theory are also presented
for comparison. The nonlinear theories produce an unphysical first-order transition at
T = 1.11J in three dimensions [25], which is similar to the FM case. The result from
(26) is best over the whole temperature region. In two dimensions,TN = 0, and the
zero-temperature sublattice magnetization is equivalent to 0.3587, which is larger than the
results from the spin-wave theories and a series expansion result [21], in which the spin-
wave behaviour was used in the extrapolation; but it is consistent with a Monte Carlo result
0.34± 0.01 [22]. The Green function Monte Carlo result is 0.31± 0.02 [23]. In one
dimension, the average sublattice magnetization is zero even at zero temperature. This is
consistent with the Mermin–Wagner theorem [24]. It is clear that the inter-site coupling
modifies the spectra, and theU -term reduces the spectral weight. Without these two terms,
we should get the linear spin-wave theory. But theU -term is necessary for removing
the unphysical states. The linear spin-wave theory overestimated the spectral weight by
about thirty per cent in a study on the sum rules and spin excitations of the quantum AFM
Heisenberg models [26].

TheU -term does not contribute to the ground-state energy. Our ground-state energies
in two and three dimensions areEAFM0 /εN = −0.327 and−0.297, respectively. The
ground-state energies are a little higher than the existing results from spin-wave theories
[13, 14, 17, 18]. On the other hand, the spectral factorf = 1−2n is less than 1. Therefore,
some improvement to the ground state is desirable.

Table 1. The AFM ground-state energy and sublattice spin available in various approximations
of quantum Heisenberg models of half-spins. The values ofE0 are in units ofJd. ‘LSW’: the
linear spin-wave theory; ‘NLSW’: the nonlinear spin-wave theory; ‘Series+ SW’: the series
expansion method in which some spin-wave behaviour was used in the extrapolation; ‘MC’:
the Monte Carlo method; ‘GFMC’: the Green function Monte Carlo method; ‘Projection’: the
method of projection using spin operators; ‘SGFMF’: the spin Green function mean-field method;
and ‘This work’: the results obtained in this paper.

Approximation 2DS3
0 2D E0 3D S3

0 3D E0

LSW [13] 0.303 −0.329 0.422 −0.2985
NLSW1 [8, 9] 0.3069
NLSW2 [18, 25] 0.303 −0.335 0.422 −0.301
Series+ SW [21] 0.3025 −0.3348
MC [22] 0.34±0.01 −0.335
GFMC [23] 0.31±0.02 −0.3346
Projection [4] 0.359 −0.132
SGFMF [2] 0.3587 −0.327 0.4325−0.297
This work 0.3587 −0.327 0.4325−0.297
This work (improved) 0.3587 −0.365 0.4325−0.309

4.3. The AFM ground states in a relaxed decoupling

To improve our approximation, we relax the constraint of the decoupling by permitting the
decoupling of the operators on a site without changing the position of the operator product
in the on-siteU -level hierarchy. In this approximation, the inter-site correlation functions
enter the spectral renormalization factorf , so we obtain the following nonlinear equation
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set with two variables at zero temperature:

1

2
=
(

1

2
− n

)
1

N

∑
k

1√
1− r2

k

ξ = −
(

1

2
− n

)
1

N

∑
k

r2
k√

1− r2
k

.

(28)

Now our magnon spectrum is defined byωk = 1
2JZf

√
1− r2

k , and our spectral factor
is defined byf = 1 − 2n − 2ξ . For the ground state, we obtain the samen and ξ
as above. Therefore we obtain(EAFM0 /εN, Sz0, f ) = (−0.3106, 0.4325, 1.084) in three
dimensions and(−0.345, 0.3587, 1.113) in two dimensions. The renormalization factors
are acceptable, and the ground-state energies are lower than those of the spin-wave theories
[13, 14, 18, 8, 9] and other available results [22, 23, 21, 4, 2]. The details are summarized
in table 1. The ground-state energies,E0, in table 1 are given in units ofJd, whered is
the dimension.

5. Discussion and summary

We have studied the half-spin strong-coupling magnon Hamiltonians without any unphysical
states in a simple Hubbard-like decoupling approximation. For higher spins, the strong-
coupling Hamiltonians can be treated similarly. Following the routine described by Fulde
[27], we can also treat our magnon Hamiltonians by means of the projection method.
In the above simple decoupling approximation, we obtain the same sublattice spins as
were obtained directly from the original spin Hamiltonians, but our spectral renormalization
factors at zero temperature are improved substantially, and our ground-state energies are
lower than those of existing approximations. From figure 2 and figure 3, it is clear that our
strong-coupling magnon Hamiltonians in the simple decoupling approximation improve on
those from the conventional spin-wave theories. The nonlinear spin-wave theories produce
unphysical first-order transitions. There have been many versions of the nonlinear spin-wave
theory, but the main features and drawbacks are similar in all of these versions. But our
strong-coupling magnon theories do not lead to such unphysical behaviour, because all of the
unphysical states in the Hilbert space have been removed, and are, therefore, advantageous
as compared with the original spin model and the conventional magnon Hamiltonian. Unlike
in reference [19], where the introduction of a similar strong-couplingU -term was suggested,
here we have presented a formulation which works for ferromagnetic and antiferromagnetic
Heisenberg models of any spins, and we have applied a Green function decoupling
approximation to this model for the first time, and were able to calculate quantities like
the order parameter (magnetization), and the critical temperatureTc.

In summary, we introduce an infinite-U term into the Holstein–Primakoff magnon
Hamiltonian of quantum Heisenberg magnetic models of any spins. This term rigorously
removes the unphysical magnon states at every site, and at the same time automatically
truncates the expansion of the square root

√
1− ni/s. The resultant magnon Hamiltonians

are accurately equivalent to the original spin Hamiltonians. We have studied the on-site
U -levels, and their implications as regards the spin physics. Within a simple decoupling
approximation, we obtain physically reasonable results for the FM magnetization and AFM
sublattice magnetization, in agreement with existing results obtained for the original spin
model. But we obtain lower ground-state energies than those from the previous theories,
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because our Hamiltonians are composed of the bosonic magnon operators, and are free of
unphysical states.
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